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Relevance to Fermilab and HEP Mission

Potential applications of strongly nonlinear focusing rings

* Intensity frontier — high-intensity and high-brightness rapid
cycling synchrotrons.
— Mitigation of ultra-fast coherent instabilities via Landau damping
— Mitigation of space-charge related losses

« Energy frontier — circular colliders (e.g. FCC)

— Cost-effective mitigation of coherent instabilities via Landau
damping

There are strong synergies with other SC offices

* Nonlinear systems can find application in EIC, lon traps, Light
sources
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Goals of Nonlinear Integrable Optics Research

1. Experimentally demonstrate viability of theoretical concepts
» Very strong academic interest — stability of nonlinear systems

« Most importantly, show whether nonlinear focusing lattices
offer practical benefits relative to linear lattices

2. Establish limits of applicability

« Are requirements to implementation tolerances supported by
present-day technology?

3. Develop practical solutions for circular accelerators pushing
the envelope in beam brightness without significant cost

increase
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Phased Approach

 Phase | — research concentrates on the academic aspect of
single-particle motion stability using electron beams

— Demonstrate large amplitude-dependent detuning with
conservation of dynamic aperture

— Demonstrate practical machine tuning and limits of integrable
optics stability in terms of imperfections, other nonlinearities,
impact of longitudinal dynamics

— Practical benefits in terms of improvement of coherent beam
stability

 Phase Il — intense-beam studies with protons
— Interplay between NIO and space-charge
— Effect of NIO on halo formation, emittance growth and losses
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Components of IOTA NIO Program

1. System with 1 invariant, aka Quasi-Integrable or Henon-
Heiles Type (talk by N.Kuklev)

— Implemented with Octupole string in BL straight

2. System with 2 invariants, aka Danilov-Nagaitsev or Elliptic
potential (covered by N.Kuklev and S.Szustkowski)

— Implemented with special magnet (RadiaBeam) in BR straight

3. Effect of nonlinear optics on coherent beam stability (talk by
N.Eddy)
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Implementations of Nonlinear Integrable Optics

1. Remove time dependence from T =
Hamiltonian thus making it an integral of
the motion
« Can be done with any nonlinear potential, for ||

example octupoles (Ql) ..|I|‘ |

2. Shape the nonlinear potential to find a .
second integral (DN)
» General solution was found, which satisfies

the Laplace equation (Phys. Rev. ST Accel.
Beams 13, 084002, 2010)

gth (1/m%)
-function (m)

f=}

Future: 2D Expansion of McMillan mapping
— Two Iinvariants of the motion
— Implementation with electron lens
— The steepest Hamiltonian
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Implementation of NIO in IOTA  Practical requirements:
* Round axially-
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Experimental Method

« Kick beam with V/H kicker to selected amplitude
* Record BPM turn-by-turn positions and beam intensity
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Run-1 Results — Amplitude-Dependent Tune Shift

~60-70% of ideal performance for both types of NIO
Clear improvement vs single octupole
Beam loss attributed to aperture restriction in DR

Limited machine tuning precision

Too fast decoherence for invariant reconstruction
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Run-2 Goals and Objectives

1. Demonstrate large (as predicted by modeling) nonlinear
amplitude-dependent tune shift without reduction of
dynamical aperture
— For QI system as a function of Q, and strength =t
— For DN system as a function of strength =t

2. Demonstrate conservation of dynamic invariants
— Restore p,p,,y,p, from TBT data

3. Systematic study of sensitivity of the NIO systems to
imperfections
— T-insert mismatch

— Intrinsic resonances
« Effect of sextupoles
« Q=" with octupoles
« Effect of integer resonance for DN system at high ¢
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Improvements/Requirements from Run-1

« Reassemble and Install Octupole string

1. Beam parameters

a. Smallest momentum spread for long decoherence time without
sextupoles - E=150 MeV, low beam current

b. Smallest transverse emittance — low (<0.5mA ) beam current to
avoid IBS

2. Lattice tuning and stability

a. All synclight cameras

b. Closed-orbit BPM with high resolution (<10um)

c. beta-function accuracy, betatron phase accuracy, orbit centering
3. Kicker control

a. Hand V controlled independently 0-1kV
4. Turn-by-turn coordinate measurement

a. Needs high beam current for best resolution, compromise with 1-b
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Run-2 Plan

NIO Experiment consisted of 3 phases
— Phases 1 and 2 in baseline NIO lattice
— For Phase 3, several lattice configurations needed

— Originally planned 12 shifts
 Phase 1+2 — 6, Phase 3 — 6.
* RunCo schedule contains 19 shifts

— Phases 1+2 — data mostly collected

— Phase 3 was not completed due to run being cut short because
of covid-19 lab shutdown

* NIOLD Experiment planned 2 shifts
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Key Elements and Selected Issues

* Nonlinear magnet
— No change since Run-1, worked well

» Octupole string
— Significant rebuild

« Machine / beam

— Good tuning of nominal lattice (although LOCO model can be
improved)

— Aperture much improved from Run-1

— Not well understood sextupole nonlinearity / chromaticity

— Beam in other buckets

e |nstrumentation / software

— BPM TBT worked well

— pylOTA software implemented by N.Kuklev late in run
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Run-2 Highlight — Beam on Integer !!!
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Run-2 Highlight - Improvement of beam stability
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